Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Over the past decades, missions at the L1 point have been providing solar wind and interplanetary magnetic field measurements that are necessary for forecasting space weather at Earth with high accuracy and a lead time of a few tens of minutes. Improving the lead time, while maintaining a relatively high level of accuracy, can be achieved with missions sunward of L1, so‐called sub‐L1 monitors. However, too much is unknown to plan for sub‐L1 monitors as operational missions: both the orbital requirements of such missions, and the achievable accuracy of forecasts based on their measurements have not been quantitatively defined. We review here some proposed mission concepts and explain the knowledge gaps related to coronal mass ejections (CMEs) that require a space weather research or science mission. We first show how STEREO‐A measurements in 2023 can be used as a proof of concept of the use of sub‐L1 monitor slightly off the Sun‐Earth line to forecast the Dst index. We then highlight that separations of are needed to ensure that CMEs measured by a sub‐L1 monitor impact Earth. Next, we show that measurements with angular separations of have negligible errors but separations of a few degrees can result in significant errors in lead time and in the forecasted magnetic field strength of CMEs. We also discuss how CME evolution over the last 0.05–0.2 au before impacting Earth is strongly under‐constrained and needs to be better understood before using measurements of sub‐L1 monitors for real‐time space weather forecasting.more » « less
-
Abstract Coronal mass ejections (CMEs) are large-scale eruptions with a typical radial size at 1 au of 0.21 au but their angular width in interplanetary space is still mostly unknown, especially for the magnetic ejecta (ME) part of the CME. We take advantage of STEREO-A angular separation of 20°–60° from the Sun–Earth line from 2020 October to 2022 August, and perform a two-part study to constrain the angular width of MEs in the ecliptic plane: (a) we study all CMEs that are observed remotely to propagate between the Sun–STEREO-A and the Sun–Earth lines and determine how many impact one or both spacecraft in situ, and (b) we investigate all in situ measurements at STEREO-A or at L1 of CMEs during the same time period to quantify how many are measured by the two spacecraft. A key finding is that out of 21 CMEs propagating within 30° of either spacecraft only four impacted both spacecraft and none provided clean magnetic cloud-like signatures at both spacecraft. Combining the two approaches, we conclude that the typical angular width of an ME at 1 au is ∼20°–30°, or 2–3 times less than often assumed and consistent with a 2:1 elliptical cross section of an ellipsoidal ME. We discuss the consequences of this finding for future multi-spacecraft mission designs and for the coherence of CMEs.more » « less
-
Abstract We present an analysis of in situ and remote-sensing measurements of a coronal mass ejection (CME) that erupted on 2021 February 20 and impacted both the Solar TErrestrial RElations Observatory (STEREO)-A and the Wind spacecraft, which were separated longitudinally by 55°. Measurements on 2021 February 24 at both spacecraft are consistent with the passage of a magnetic ejecta (ME), making this one of the widest reported multispacecraft ME detections. The CME is associated with a low-inclined and wide filament eruption from the Sun’s southern hemisphere, which propagates between STEREO-A and Wind around E34. At STEREO-A, the measurements indicate the passage of a moderately fast (∼425 km s−1) shock-driving ME, occurring 2–3 days after the end of a high speed stream (HSS). At Wind, the measurements show a faster (∼490 km s−1) and much shorter ME, not preceded by a shock nor a sheath, and occurring inside the back portion of the HSS. The ME orientation measured at both spacecraft is consistent with a passage close to the legs of a curved flux rope. The short duration of the ME observed at Wind and the difference in the suprathermal electron pitch-angle data between the two spacecraft are the only results that do not satisfy common expectations. We discuss the consequence of these measurements on our understanding of the CME shape and extent and the lack of clear signatures of the interaction between the CME and the HSS.more » « less
An official website of the United States government
